miércoles, 8 de abril de 2009

Aritmética modular y Semana Santa

¿Qué tiene que ver una festividad católica con la aritmética modular? ¿Por qué la Semana santa cambia tanto de fecha? Ambas preguntas están estréchamente relacionadas.

Comencemos con un poco de historia. La Semana Santa es una festividad católica que tiene como colofón el Domingo de Resurrección o Pascua de Resurrección, y es ese preciso día el que marca todas las festividades católicas con fecha variable. Pero olvidemos por unos momentos las reminiscencias religiosas y quedémonos con la cuestión en sí del cálculo de dicha fecha.

De todos es sabido que la Semana Santa va cambiando (y bastante) de fechas y esta fecha viene determinada por la de la Pascua (cristiana). Por tanto, la pregunta es ¿cómo se define esta pascua? Tras muchas discusiones y concilios en el seno de la Iglesia, finalmente fue Dionisio el Exiguo (en el año 525) quien consiguió unificar el cálculo de la pascua cristiana. Para ello hay que partir de ciertas premisas:

  • La Pascua ha de caer en domingo.

  • Este domingo ha de ser el siguiente a la primera luna llena de la primavera boreal. Si esta fecha cayese en domingo, la Pascua se trasladará al domingo siguiente para evitar la coincidencia con la Pascua judía.

  • La luna pascual es aquella cuyo plenilunio tiene lugar en el equinoccio de primavera del hemisferio norte o inmediatamente después.

  • Este equinoccio tiene lugar el 21 de marzo.

  • Llamamos epacta a la edad lunar. En concreto nos interesa para este cálculo la epacta del año, es decir, la diferencia en días que el año solar excede al año lunar. O dicho más fácilmente, el día del ciclo lunar en que está la Luna el 1 de enero del año cuya Pascua estamos calculando. Este número —como es lógico— varía entre 0 y 29.



En fin, mucha palabrería y nada de matemáticas hasta ahora. Como podréis suponer, el cálculo de la Pascua cristiana es ciertamente tedioso, a partir de dichas premisas y ha supuesto un gran problema.

Durante años han surgido diferentes métodos para calcular esta fecha, incluso durante el Renacimiento se extrajeron tablas de cálculo para la Pascua en función del número de oro φ. Hoy en día la fórmula más sencilla de calcular esta fecha es mediante la fórmula desarrollada por Gauss. Él, quien sino, propuso un sencillo algoritmo para el cálculo efectivo de esta fecha a través de la aritmética modular. Pero para ello necesitaremos ciertas variables.

Llamemos A al año para el que queramos calcular la Pascua. Llamemos M=24 y N=5 (dependiendo del siglo en el que esté A, los valores de M y N cambiarán, cf Wikipedia).

Sea a=A mod 19.
Sea b=A mod 4.
Sea c=A mod 7.
Sea d=19a+M mod 30.
Sea e=2b+4c+6d+N mod 7.

Entonces:

  • Si d+e<10, entonces la Pascua será el día d+e+22 de Marzo.

  • Si d+e>9, entonces la Pascua será el día d+e-9 de Abril

  • Si la fecha obtenida es el 26 de Abril, entonces la Pascua se adelanta una semana y será el 19 de Abril.

  • Si la fecha obtenida es el 25 de abril, con d=28, e=6 y a>10, entonces la Pascua se adelanta 1 semana y caerá en el 18 de abril.


Veamos un ejemplo de cómo funciona, comprobando la Pascua para el presente año, es decir, con A=2009. En este caso:
a=2009 mod 19, es decir, a=14.
b=2009 mod 4, es decir, b=1.
c=2009 mod 7, es decir, c=0.
d=19a+M mod 30, en este caso, d=290 mod 30, es decir, d=20.
e=2b+4c+6d+N mod 7, en este caso, e=127 mod 7, es decir, e=1.
Como d+e=21>9, la Pascua será el día d+e-9=12 de Abril, que es, precisamente, el próximo Domingo.

En fin, en el artículo de la Wikipedia sobre cáluclo de la fecha de Pascua, en el que se basa esta entrada, podéis encontrar programas en diferentes lenguajes de programación para calcular estas fechas, así como más datos al respecto.

Tito Eliatron Dixit.
Related Posts Plugin for WordPress, Blogger...