miércoles, 28 de enero de 2009

Ofertas: porcentajes y aritmética modular

¿Para qué voy a a prender matemáticas? si, total, no sirven para nada.

¿Cuántas veces habré oído esta frase a todo tipo de personas? Cuánta ignorancia! Si incluso este analfabetismo matemático tiene precio: 44.000 Libras por persona y año (en Reino Unido). Pero el motivo de esta entrada no es criticar, sino demostrar que las Matemáticas están a la orden del día, y más en época de crisis y rebajas.

Todo comenzó cuando una compañera, profesora de Matemáticas de Secundaria, me comentó el problema que les iba plantear a sus alumnos con respecto a los porcentajes:
En una tienda (llamémosla A) hay una oferta del tipo 3x2, mientras que en la tienda B hay un 30% de descuento en todos los artículos. ¿Dónde es mejor comprar?

Ajá! conque las Matemáticas no servían para nada, ¿eh?, aquí te quiero yo ver ahora. Parece un simple problema de cálculo de porcentajes y, de hecho, así estaba planteado. Lo que mi compañera no recordaba es que mi mente es demasiado truculenta para estas cuestiones y mi respuesta fue, evidentemente, DEPENDE.

¿Cómo que depende? diría alguien que no lee habitualmente este blog. Pues sí, DEPENDE.

En un principio, uno puede pensar que en la Tienda A, al haber una oferta 3x2, pagas 2 y te llevas 3, es decir, hacen de facto un descuento del 33'33%, mientras que la Tienda B sólo hace un descuento del 30%. Por lo tanto habría que ir a comprar a la Tienda A.

Pero mi razonamiento, y supongo que el tuyo también querido lector, es el siguiente. Todo lo anterior es perfectamente válido si uno quiere adquirir exactamente 3 (o un múltiplo de 3) artículos iguales, pues, en tal caso, sólo he de pagar 2 y mi descuento es, efectivamente, del 33'33%. Pero ¿qué ocurre si quiero adquirir exactamente 4 artículos? Esta situación hay que pensarla un poquito.

En la Tienda A, la del 3x2, harían la transacción de la siguiente manera: 3 artículos se beneficiarían de la oferta 3x2, mientras que el 4º habría que pagarlo individualmente. Por lo tanto, pagaré 3 artículos y me llevaré 4, por lo que el descuento efectivo será de un 25%. Mientras que en la Tienda B, cogerían los 4 artículos y harían un descuento del 30% sobre el total de ellos (o sobre cada uno de ellos), por lo que me sería más rentable comprar en la Tienda B. Por cierto, el mismo razonamiento es válido si quiero comprar un número de artículos que sea múltiplo de 3, +1, es decir, si el número de artículos es 1 (módulo 3).

¿Y si sólo quiero comprar 2 artículos? Bueno, en este caso dependerá de las necesidades de cada uno. Me explico. En la Tienda A es técnicamente imposible comprar 2 artículos, pues al pagar 2, automáticamente te regalan el 3º (vamos a suponer que las tiendas son totalmente lógicas y consecuentes), en definitiva, consigues un descuento del 33'33%, pero también te llevas un artículo de más (¿lo necesitarás algún día?). Sin embargo, en la Tienda B al comprar 2 artículos te siguen haciendo un descuento del 30% y no te obligan a llevarte un artículo de más. Así que, en este caso (caso en que quieras adquirir un número de artículos que sea igual a 2 módulo 3) dependerá de la naturaleza de lo que necesites comprar, porque... si es leche, por ejemplo, tarde o temprano necesitarías la 3ª botella, mientras que si son libros (a lo mejor quieres comprar 1 libro para ti y el mismo libro para un regalo) ¿para qué podrías querer 3 libros idénticos?.

En fin, que lo que en un principio era un simple problema sobre porcentajes, se acabó convirtiendo en una curiosa forma de introducir la aritmética modular a chicos de secundaria y de hacerles ver que las Matemáticas sirven para ayudar a la economía doméstica en tiempos de crisis
Related Posts Plugin for WordPress, Blogger...