viernes, 30 de octubre de 2009

Cómo hacerse rico: el método lógico

Cuentan las malas lenguas que hubo un tiempo en que se leía un curioso anuncio en los periódicos locales. El anuncio era de una empresa desconocida que decía lo siguiente:
Hazte rico fácilmente. Envíanos 1 Euro y te diremos cómo hacerlo.
Y adjuntaban la dirección.

Alguien envió ese euro a la dirección indicada y recibió una curiosa respuesta, aunque, si lo pensamos, absolutamente lógica:
Haz como nosotros.


Digamos que esto sería una estafa autorreferente.

Moraleja, no te fíes de los anuncios que ofrecen hacerte rico porque, a veces, sólo es cuestión de aplicar la lógica.

Tito Eliatron Dixit.


Extraído del libro Ajá! Paradojas, de Martin Gardner.

miércoles, 28 de octubre de 2009

Porcentajes y pendientes: el seno o la tangente


Cualquier persona que se haya sacado el carnet de conducir, o incluso alguien que circule por carretera y tenga un mínimo de curiosidad, sabrá perfectamente el significado de las señales de tráfico que abren este artículo. ¿Seguro que lo saben? ¿Y tú, lector, estás seguro de conocer el significado de esta señal?

Según la D.G.T. se trata de subida y bajada con fuerte pendiente respectivamente (la cifra indica la pendiente en porcentaje). Y ahora llega el punto central de este artículo ¿qué significa "pendiente"? o mejor dicho ¿cómo se calcula la pendiente?

Matemáticamente hablando (que para eso esto es un blog de matemáticas) la pendiente de una recta es la razón (cociente) que existe entre la distancia vertical recorrida y la distancia horizontal. Si pensamos en un triángulo como el de la imagen siguiente
la pendiente será p=v/c, o lo que es lo mismo, p=tan(α). De todas formas, es mucho más corriente, para cuestiones topográficas, expresar la pendiente de una carretera en forma de porcentaje. En este caso, la pendiente será p=(v/c)·100, y el número resultante se expresará en tanto por ciento. Y aquí es donde comienzan los problemas.

Estamos habituados a que un porcentaje suele ser un valor entre 0 y 100, donde 100% representa el máximo posible. Pero en este caso y según esta definición, ¿qué significa una pendiente del 100%? ¿una recta vertical? No. Una pendiente del 100%, según la definición, es aquélla en donde la distancia vertical recorrida coincide con la distancia horizontal, en definitiva, una pendiente de 45º. ¿Y cómo se representa una recta vertical? Estrictamente hablando, en una recta vertical, la distancia horizontal es 0, mientras que la vertical es la que sea; por lo que p=100 v/0, y podemos entender que se corresponde con una pendiente ∞%.

Así que ya sabemos lo que significa, matemáticamente hablando, el numerito (en porcentaje) que aparece en las señales de grandes pendientes. Otra cosa es cómo se calcula es número, porque el método puede resultar complicado. Pensemos que para calcular una pendiente vamos a necesitar la distancia vertical y la horizontal, pero... ¿cómo calculamos la horizontal? ¿atravesamos el suelo? porque el porblema es que nosotros sólo podemos movernos por la carretera, es decir, por la hipotenusa del triángulo rectángulo.

Así que en la práctica (obviando la utilización de la moderna tecnología de los GPS, y aplicando métodos manuales) sólo podemos calcular la distancia verctical y la distancia total recorrida, es decir, en el triángulo rectángulo de antes (lo vuelvo a poner) sólo podremos conocer v y d. Por lo tanto, y repito de nuevo, en la práctica vamos a calcular la pendiente utilizando la fórmula p=v/d=sen(α).

Pero claro, esta forma de proceder provoca errores. Sin embargo, para ángulos pequeños, estos errores son también muy pequeños, dado que cerca del 0, el x y sen(x) son tremendamente parecidos, tanto que limx->0sen(x)/x=1. ¿Y cómo de pequeños han de ser los ángulos para que el error sea también pequeño? Pues aquí debajo os dejo una pequeña hoja de cálculo en la que tenéis los ángulos desde 0º a 90º, la pendiente (usando la tangente) y la aproximación (usando el seno).


Si no ves nada aquí arriba, consulta el Documento siguiendo el enlace anterior.

Como podéis comprobar, para ángulos de hasta 15º, el error cometido es menor que el 1%. De todas formas, en muy raras ocasiones nos vamos a encontrar con carreteras cuya pendiente sea superior al 20%, en este caso, estaríamos hablando de ángulos de unos 11º o 12º, por lo que el método del seno es una muy buena aproximación.

En resumen, en este artículo hemos aprendido qué es la pendiente de una recta (o carretera), qué significa el porcentaje que aparece en las señales de la DGT, así como el método más rápido para calcular la pendiente de una recta. También nos hemos dado cuenta de que una pendiente del 100% no significa una pendiente vertical, sino un ángulo de 45º (según la definición matemática de pendiente). Así que ya sabéis, incluso en la carretera hay matemáticas.

Tito Eliatron Dixit.


REFERENCIAS:
Cálculo de la Pendiente, de la web Altimetrías de puertos de montaña.
Métodos de cálculo de la dificultad de un puerto de montaña, de la web Ciclistas Sierra Sur de Jaén.
Grade (Slope), artículo de Wikipedia en Inglés sobre la pendiente.


Imagen inicial editada de originales (descendente y ascendente) extraídos de la Wikipedia (contenido libre).
Resto de imágenes y material creados por el autor.

lunes, 26 de octubre de 2009

Hombres como fracciones

Un hombre es como una fracción cuyo numerdor es lo que es y el denominador es lo que él piensa que es. Cuanto más grande es el denominador, más pequeña es la fracción.

León Tolstói, novelista ruso


La egolatría y el egocentrismo, expresado como una fórmula matemática.

¿Se os ocurre alguien a quien aplicársela?

Tito Eliatron Dixit.

miércoles, 21 de octubre de 2009

El origen de los números irracionales

No, no vamos a hablar de la gran mentira de los números, esa que dice que primero surgieron los números naturales por la necesidad de contar, luego los enteros por la necesidad de restar, etc... Hoy vamos a comentar el origen del término irracional para nombrar a aquellos números reales que no son racionales, es decir, números reales que no se pueden expresar como un cociente de números enteros.

Todo se remonta a la Grecia clásica, en particular, a la época pitagórica. Pitágoras nació en la isla de Samos, en el año 582 a.C. donde completó sus estudios para, posteriormente, crear su famosa escuela pitagórica en Crotona. Aunque más que una escuela, llegó a ser una especie de secta. Pero vamos a ser políticamente correctos y vamos a llamarlos organización. La organización pitagórica tenía como creencia fundamental que todas las cosas son, en esencia, números. O dicho de otro modo, que una vez definida una unidad todo lo que nos rodea es mensurable, es decir, que puede medirse a través de esta unidad. Pero para los pitagóricos el concepto de medir significaba que o bien era un número entero de veces la unidad, o bien un número entero de partes de la unidad (o una mezcla de ambas). En definitiva, cocientes de números enteros.

El pensamiento pitagórico se levanta sobre una estructura matemática racional: todo lo que se salga de su orden de pensamiento, escapa a la razón. Por ello esta escuela entró en crisis. El archiconocido Teorema de Pitágoras fue redescubierto por esta escuela de pensamiento, pero con él llégó el problema, pues como primera aplicación del teorema obtenemos un nuevo número √2. Y resulta que este número no es mensurable con respecto a la unidad.

Como este hecho ponía en serio peligro la filosofía pitagórica y dado que escapaba a su razón, decidieron darle el nombre de Irracional, además de ocultar este descubrimiento a la comunidad filosófico-científica de la época. De hecho, se cuenta que uno de los miembros de esta escuela, Hipaso de Metaponto, fue el que dio con una demostración de la irracionalidad del número √2 (consulta la prueba geométrica, muy similar a la realizada, presuntamente, por Hipaso). Sin embargo, parece ser que Hipaso no cumplió el voto de silencio que pesaba sobre la irracionalidad de √2, por lo que la hermandad pitagórica lo habría expulsado de la escuela y habrían erigido una tumba con su nombre, mostrando así que para ellos, él estaba muerto. De hecho, la leyenda cuenta que los propios miembros de la hermandad pitagórica ahogaron a Hipaso.

En fin, que como habéis podido comprobar, incluso dentro de las matemáticas hay leyendas. Es más, hasta lo más irracional, puede deberse a un hecho completamente racional. E incluso se puede morir, como ya se ha visto otras veces, por un descubrimiento matemático.

Tito Eliatron Dixit.

ACTUALIZACIÓN: Esta noticia ha llegado a portada de Meneame.net. Gracias por el meneo, nade.



Fotografía del busto de Pitágoras extraída de Wikipedia.