Cuando un alumno se enfrenta por primera vez a las series, es decir, a las sumas infinitas, se encuentra con numerosos momentos en los que la lógica parece no funcionar bien. Y no hay que irse a series extrañas o
formas diferentes de sumar números naturales, por ejemplo.
¿Es posible que sumando cosas cada vez más pequeñas al final lleguemos al infinito? Dicho en lenguaje matemático, ¿existen series divergentes cuyo término general tiende a cero? La respuesta es que claro que sí. Y seguro que te ha venido a la mente EL EJEMPLO clásico:
La serie armónica. En este artículo vamos a ver alguna forma de probar que la serie armónica es divergente.
 |
Idea extraída de aquí |