Ante el apabullante éxito de los Hechos Matemáticos de Chuck Norris y, sobre todo, visto el grado de implicación de todos los lectores, vamos a escribir una recopilación de aquéllos hechos que hayáis dejado en los comentarios y que más me han llamado la atención.
Para resolver un problema en, Chuck Norris lo piensa en y después simplifica.
no era tan pequeño antes de toparse de bruces con Chuck Norris.
Como Chuck Norris no podía demostrar la conjetura de Goldbach por falta de tiempo, sumó todos los primos dos a dos y la comprobó.
Chuck Norris puede hacer poliedros regulares de 3 caras, se llaman ChuckNorrisedros. (Gracias Noxbru)
Chuck norris puede recorer el perimetro de un fractal.
i se hizo imaginario por miedo a Chuck Norris.
Schrödinger utilizo a Chuck Norris para demostrar su paradoja, pero finalmente utilizo un gato por lo inexplicable de los resultados de la primera prueba: al abrir la caja chuck siempre vivia y no habia rastro de los demás elementos.
Chuck Norris puede expresar los números irracionales en forma de fracción. (Gracias Rafalillo) Es más, cuando Chuck Norris se enteró de que Hipaso demostró que era irracional, fué él mismo el que lo ahogó y no los Pitagóricos.
Los agujeros del Conjunto de Cantor son los lugares donde el intervalo [0,1] recibió alguna patada voladora de Chuck norris.
Realmente, y tal y como dijo un comentarista, he preferido obviar aquellos hechos en los que se diga que Chuck Norris es capaz de hacer algo que un determinado Teorema matemático afirma que es imposible. Espero que no les importe.
Dado que esto nos atañe a todos los que nos movemos en el mundo de los blogs, desde Tito Eliatron Dixit nos unimos a este gran clamor popular que es el Manifiesto en defensa de los derechos fundamentales en Internet.
Ante la inclusión en el Anteproyecto de Ley de Economía Sostenible de modificaciones legislativas que afectan al libre ejercicio de las libertades de expresión, información y el derecho de acceso a la cultura a través de Internet, los periodistas, bloggers, usuarios, profesionales y creadores de internet manifestamos nuestra firme oposición al proyecto, y declaramos que:
Los derechos de autor no pueden situarse por encima de los derechos fundamentales de los ciudadanos, como el derecho a la privacidad, a la seguridad, a la presunción de inocencia, a la tutela judicial efectiva y a la libertad de expresión.
La suspensión de derechos fundamentales es y debe seguir siendo competencia exclusiva del poder judicial. Ni un cierre sin sentencia. Este anteproyecto, en contra de lo establecido en el artículo 20.5 de la Constitución, pone en manos de un órgano no judicial -un organismo dependiente del ministerio de Cultura-, la potestad de impedir a los ciudadanos españoles el acceso a cualquier página web.
La nueva legislación creará inseguridad jurídica en todo el sector tecnológico español, perjudicando uno de los pocos campos de desarrollo y futuro de nuestra economía, entorpeciendo la creación de empresas, introduciendo trabas a la libre competencia y ralentizando su proyección internacional.
La nueva legislación propuesta amenaza a los nuevos creadores y entorpece la creación cultural. Con Internet y los sucesivos avances tecnológicos se ha democratizado extraordinariamente la creación y emisión de contenidos de todo tipo, que ya no provienen prevalentemente de las industrias culturales tradicionales, sino de multitud de fuentes diferentes.
Los autores, como todos los trabajadores, tienen derecho a vivir de su trabajo con nuevas ideas creativas, modelos de negocio y actividades asociadas a sus creaciones. Intentar sostener con cambios legislativos a una industria obsoleta que no sabe adaptarse a este nuevo entorno no es ni justo ni realista. Si su modelo de negocio se basaba en el control de las copias de las obras y en Internet no es posible sin vulnerar derechos fundamentales, deberían buscar otro modelo.
Consideramos que las industrias culturales necesitan para sobrevivir alternativas modernas, eficaces, creíbles y asequibles y que se adecuen a los nuevos usos sociales, en lugar de limitaciones tan desproporcionadas como ineficaces para el fin que dicen perseguir.
Internet debe funcionar de forma libre y sin interferencias políticas auspiciadas por sectores que pretenden perpetuar obsoletos modelos de negocio e imposibilitar que el saber humano siga siendo libre.
Exigimos que el Gobierno garantice por ley la neutralidad de la Red, en España ante cualquier presión que pueda producirse, como marco para el desarrollo de una economía sostenible y realista de cara al futuro.
Proponemos una verdadera reforma del derecho de propiedad intelectual orientada a su fin: devolver a la sociedad el conocimiento, promover el dominio público y limitar los abusos de las entidades gestoras.
En democracia las leyes y sus modificaciones deben aprobarse tras el oportuno debate público y habiendo consultado previamente a todas las partes implicadas. No es de recibo que se realicen cambios legislativos que afectan a derechos fundamentales en una ley no orgánica y que versa sobre otra materia.
Este manifiesto, elaborado de forma conjunta por varios autores, es de todos y de ninguno. Se ha publicado en multitud de sitios web. Si estás de acuerdo y quieres sumarte a él, difúndelo por Internet.
¿Hcabdlog? Pero Tito eliatron, ¿qué te pasa en la boquita? Todo tiene su explicación. Comencemos viendo el siguiente vídeo:
¿Y con la conjetura de Goldbach se liga? En fin, dejémonos de amoríos y centrémonos en las matemáticas. Como bien dicen en este vídeo (introducción de la película La Habitación de Fermat), la Conjetura de Goldbach aventura que
Todo número par mayor que 2 puede escribirse como suma de dos números primos.
Como muchos de vosotros ya sabréis (de hecho, ya se comentó algo en este blog) este resultado es una conjetura, ya que, a pesar de su simplicidad, no se conoce demostración alguna, aunque sí se ha comprobado para una gran cantidad de números.
En el presente artículo, no vamos a demostraros esto (lástima). Si en la Conjetura de Goldbach se trata de escribir números impares como suma de dos primos, aquí vamos a escribir números primos como suma de dos números. Vamos como en Goldbach pero al revés, de ahí el nombre: Conjetura de Hcabdlog (¡anda!, la única letra muda, más las 4 primeras letras del abecedario desordenadas, más un logaritmo; curioso):
Un número es primo impar si y sólo si se puede escribir como suma de 2 números naturales consecutivos, pero no se puede escribir como suma de 3 ni de 4, ni de 5,..., ni de más números consecutivos.
De hecho, esta conjetura es, en realidad, un resultado, ya que no es muy difícil demostrarlo, como vamos a ver a continuación.
En primer lugar vamos a familiarizarnos con las sumas de números consecutivos (dos o más). Ni el 1 ni 2 se pueden escribir como suma de números consecutivos; 3=1+2; el 4 tampoco se puede expresar como suma de consecutivos; 5=2+3; 6=1+2+3; 7=3+4; el 8 tampoco se puede; 9=2+3+4=4+5; 10=1+2+3+4; 11=5+6; 12=3+4+5; 13=6+7; 14=2+3+4+5; 15=1+2+3+4+5=7+8; y el 16 tampoco se puede escribir. Así visto, parece que los únicos números que no se pueden expresar como suma de consecutivos son el 1, 2, 4, 8, 16,... es decir, las potencias de 2.
De una forma más organizada:
Si sumamos 2 números consecutivos, obtenemos los números imapres, a partir del 3: n+(n+1)=2n+1={3,5,7,9,11,13,...}.
Si sumamos 3 números consecutivos, obtenemos los múltiplos de 3, a partir del 6: n+(n+1)+(n+2)=3n+3=3(n+1)={6,9,12,15,18,...}.
Si sumamos 4 números consecutivos, obtenemos los múltiplos de 4 más 2, a partir del 10: n+(n+1)+(n+2)+(n+3)=4n+6=4(n+1)+2={10,14,18,22,26,...}.
Las sumas de 5 consecutiivos dan {15,20,25,30,...}
Las sumas de 6 dan {21, 27, 33, 39,...}
Las sumas de 7 dan {28, 35, 42, 49,...}
En general, si sumamos d números naturales consecutivos obtendremos lo siguiente:
Curiosamente, los números que son suma de una cantidad impar de números consecutivos, son todos múltiplos de dicho número. En efecto, si d=2k+1, entonces
Sin embargo, la suma de un número par de números consecutivos, no es múltiplo de ese número (y esto, ya os lo dejo a vosotros, queridos lectores).
Con todo esto, nos damos cuenta de que es importante saber si el número d de números consecutivos es par o impar. Y ahora vamos a comenzar la demostración de la Conjetura de Hcabdlog, de hecho, vamos a probar aún más cosas.
Elijamos un número natural n y vamos a ver si lo podemos escribir como suma de d números consecutivos.
En primer lugar, como 1+2+3+...+d=d(d+1)/2, es imprescindible que nuestro número n sea mayor o igual que este valor. En segundo lugar, vamos a diferenciar si d es par o impar.
En el caso en que d sea impar, vamos a efectuar la división n/d. Si nos sale exacta, es decir, si d es un divisor de n, basta tomar d números consecutivos de forma que n/d esté justo en medio, es decir, de forma simétrica. En resumen, tomamos los números {n/d, n/d±1, n/d±2,...,n/d±(d-1)/2}. Mira el dibujo si no te queda suficientemente claro: Por ejemplo si n=60 y d=3, como 60/3=20, tomamos los números 19+20+21=60.
Resumiendo, para cada divisor impar de n tal que d(d+1)/2≤n, tenemos una representación de n como suma de d números consecutivos. Y además, no hay más formas de escribir n como una suma de un número impar de números consecutivos.
En el caso en que d sea par, la cosa ya no funciona igual. Ahora vamos a necesitar que al dividir n entre el número de sumandos d (que ahora, repito, es par) nos dé un número situado justo en medio de dos naturales (un coma 5 vamos), es decir, vamos a necesitar que d sea divisor de 2n pero no de n. Así que si llamamos k=2n/d (que, tal y como hemos dicho, ha de ser impar), entonces k/2=n/d estará justo entre dos naturales. Ahora basta con coger de forma simétrica d/2=n/k naturales a un lado y a otro de k/2. Pero mira mejor el siguiente dibujo: Por tanto, dado un divisor impar k de n, tenemos expresado n como suma de 2n/k números consecutivos. La única condición que hay que imponer es que, con este proceso, no tomemos números negativos, es decir, k/2+1/2>n/k, o lo que es lo mismo, k(k+1)/2>n, que es la misma condición que que obtuvimos al principio. Además, ésta es la única forma de expresar n como suma de una cantidad par de números consecutivos.
En resumen, si juntamos lo obtenido para los casos impar y par resulta que
Un número se escribe como suma de consecutivos de tantas formas como divisores impares tenga.
Por lo que ya tenemos todo hecho y podemos obtener los siguientes resultados.
Los números que no se pueden expresar como suma de consecutivos son las potencias de 2, ya que éstos son los únicos números sin divisores impares.
Los únicos números que se pueden escribir como suma de 2 consecutivos pero no de 3, ni de 4 ni de 5,..., ni de más, son los primos impares, pues son los que tienen un único divisor impar, luego sólo se pueden escribir de 1 única forma y esta forma es, claramente, con 2 consecutivos.
Como habréis podido ver, el resultado de la Conjetura de Hcabdlog a pesar de parecerse mucho a la Conjetura de Goldbach, sí se puede demostrar y, además, su demostración no es demasiado técnica, tan sólo hay que escribir bien las cosas y tener mucho cuidado.
Tito Eliatron Dixit.
Este artículo es una adaptación de otro de similar nombre aparecido en la Hoja Volante de Octubre de 2009 (PDF, 1.75Mb) obra de Carlos Vinuesa, quien nos dio permiso para utilizarlo. Muchas gracias, Carlos.
Aunque con un día de retraso, os anuncio que ayer se celebró el Primer Carnaval de Física, organizado por los chicos de Gravedad Cero. Y, la verdad, fue todo un éxito.
En el primero de los enlaces que os he dejado, podéis encontrar todas las contribuciones que, desde la blogosfera científica, han ido apareciendo durante la semana pasada. En particular, desde Tito Eliatron Dixit, a pesar de no ser un blog específicamente sobre física, hemos aportado nuestro pequeño granito de arena con una interesante cita de Oppenheimer que apareció el pasado lunes bajo el título Niños de los que juegan en la calle.
Pero lo mejor es que seáis vosotros mismos los que vayáis descubriendo diferentes aspectos divulgativos relacionados con la física que muy buenos bloggers han creado para nuestro deleite.